Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum

نویسندگان

  • Sooyeon Lee
  • Sunghyun Kim
  • Saeyeon Kim
  • Insook Lee
چکیده

Fagopyrum esculentum commonly named as buckwheat plant is pseudocereal food crops and healthy herbs but is not known as a bioindicator of environmental condition. In the present study, the effects of ZnO nanoparticles (NPs) and microparticles (MPs) on plant growth, bioaccumulation, and antioxidative enzyme activity in buckwheat were estimated under hydroponic culture. The significant biomass reduction at concentrations of 10-2,000 mg/L was 7.7-26.4 % for the ZnO NP and 11.4-23.5 % for the ZnO MP treatment, (p < 0.05). ZnO NPs were observed in root cells and root cell surface by scanning electron microscopy and transmission electron microscopy analysis. Zn bioaccumulation in plant increased with increasing treatment concentrations. The upward translocation (translocation factor <0.2) of Zn in plant was higher with the ZnO NP treatment than that with the ZnO MP treatment. Additionally, reactive oxygen species generation by ZnO NPs was estimated as the reduced glutathione level and catalase activity, which would be a predictive biomarker of nanotoxicity. The results are the first study to evaluate the phytotoxicity of ZnO NPs to medicinal plant. F. esculentum can be as a good indicator of plant species in NP-polluted environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings.

Nitric oxide (NO) has been found to function in enhancing plant tolerance to various environmental stresses. However, role of NO in relieving zinc oxide nanoparticles (ZnO NPs)-induced phytotoxicity remains unknown. Here, sodium nitroprusside (SNP, a NO donor) was used to investigate the possible roles and the regulatory mechanisms of NO in counteracting ZnO NPs toxicity in rice seedlings. Our ...

متن کامل

Assessment of the Phytotoxicity of Metal Oxide Nanoparticles on Two Crop Plants, Maize (Zea mays L.) and Rice (Oryza sativa L.)

In this study, the phytotoxicity of seven metal oxide nanoparticles(NPs)-titanium dioxide (nTiO₂), silicon dioxide (nSiO₂), cerium dioxide (nCeO₂), magnetite (nFe₃O₄), aluminum oxide (nAl₂O₃), zinc oxide (nZnO) and copper oxide (nCuO)-was assessed on two agriculturally significant crop plants (maize and rice). The results showed that seed germination was not affected by any of the seven metal o...

متن کامل

Evaluation of Iinhibition Effect of ZnO Nanoparticles Concentration regarding Seed Germination and Seedling Growth of Fenugreek (Trigonella foenum-graecum L.)

A laboratory trial was conducted to determine whether suspensions of ZnO nanoparticles (ZnO NPs) could interfere with the early growth of fenugreek. This plant species is one of the recommended species by Organization for Economic Cooperation and Development (OECD). Nine concentrations of ZnO NPs (10, 50, 100, 500, 1000, 2000, 3000, 4000, and 5000 mg/L) were prepared in deionized )DI( water (co...

متن کامل

CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat

Metal oxide nanoparticles (NPs) are reported to impact plant growth in hydroponic systems. This study describes the impact of commercial CuO (\50 nm) and ZnO (\100 nm) NPs on wheat (Triticum aestivum) grown in a solid matrix, sand. The NPs contained both metallic and non-metallic impurities to different extents. Dynamic light scattering and atomic force microscopy (AFM) assessments confirmed ag...

متن کامل

Biosynthesis and Accumulation of Flavonoids in Fagopyrum spp

Buckwheat is a multipurpose crop used for both grains and greens and known to have several medicinal and nutritional properties. Buckwheat contains flavonoids such as rutin, anthocyanins, catechins, chlorogenic acid, 4-hydroxy-3-methoxy benzoic acid, caffeic acid, epicatechins, p-courmaric acid, ferulic acid etc. Fagopyrum esculentum and Fagopyrum tataricum are the major source of flavonoid cal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2013